New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

نویسندگان

  • Leonardo Del Rosso
  • Milva Celli
  • Lorenzo Ulivi
چکیده

The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM

Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, meta...

متن کامل

Decomposition and Terapascal phases of water ice.

Computational searches for stable and metastable structures of water ice and other H:O compositions at TPa pressures have led us to predict that H(2)O decomposes into H(2)O(2) and a hydrogen-rich phase at pressures of a little over 5 TPa. The hydrogen-rich phase is stable over a wide range of hydrogen contents, and it might play a role in the erosion of the icy component of the cores of gas gia...

متن کامل

Relaxation time of water's high-density amorphous ice phase.

Dielectric relaxation spectroscopy of pressure amorphized hexagonal ice shows that water's high-density amorphous form relaxes in approximately 1 s at 140 K and 1 GPa and that the relaxation is virtually unaffected by pressure. This indicates that the amorph is an ultraviscous liquid above 140 K, the same as would be obtained by supercooling water at 1 GPa through its ice VI phase boundary, and...

متن کامل

Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions.

We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996-916 kg m-3) in quartz. Microthermometric measurements include: (i) prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophas...

متن کامل

Clathrate ice sL: a new crystalline phase of ice with ultralow density predicted by first-principles phase diagram computations.

In contrast to the rich knowledge of water and 17 experimentally confirmed crystalline phases of solid water under positive pressures, water under negative pressure has been poorly explored. In this study, a new crystalline phase of ice with ultralow density (0.6 g cm-3), named "clathrate ice sL", is constructed by nano water cage clusters, and it is predicted to be stable under a lower negativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016